Jacobi identities, modular lattices, and modular towers
نویسندگان
چکیده
We give first a simple proof of a generalized Jacobi identity for n-dimensional odd diagonal lattices which specializes to the classical Jacobi identity for the lattice Z2. For Z +√ Z, it recovers a one-parameter family of Jacobi identities discovered recently by Chan, Chua and Solé, used to deduce two quadratically converging algorithms for computing π corresponding to elliptic functions for the cubic and septic bases. Next, motivated by strongly modular lattices for the ten special levels , where σ1( ) | 24, we derive quadratic iterations in these ten special levels generalizing the cubic and septic cases. This also gives a uniform proof of the equations used by N.D. Elkies for 13 of his explicit modular towers. They correspond exactly to the case where all eta terms occur to the same power in his list. This provides a link between strongly modular lattices and modular towers. © 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
On Some Identifies Valid in Modular Congruence Varieties
Freese and J6nsson [8] showed that the congruence lattice of a (universal) algebra in a congruence modular variety is always arguesian. On the other hand J6nsson [16] constructed arguesian lattices which cannot be embedded into the normal subgroup lattice of a group. These lattices consist of two arguesian planes of different prime order glued together over a two element sublattice (cf. Dilwort...
متن کاملCodes over F4, Jacobi forms and Hilbert-Siegel modular forms over Q(sqrt(5))
We study codes over a finite field F4. We relate self-dual codes over F4 to real 5-modular lattices and to self-dual codes over F2 via a Gray map. We construct Jacobi forms over Q( √ 5) from the complete weight enumerators of self-dual codes over F4. Furthermore, we relate Hilbert–Siegel forms to the joint weight enumerators of self-dual codes over F4. © 2004 Elsevier Ltd. All rights reserved.
متن کاملShifted and Shiftless Partition Identities Ii
Let S and T be sets of positive integers and let a be a fixed positive integer. An a-shifted partition identity has the form p(S, n) = p(T, n − a), for all n ≥ a. Here p(S, n) is the number partitions of n whose parts are elements of S. For all known nontrivial shifted partition identities, the sets S and T are unions of arithmetic progressions modulo M for some M . In 1987, Andrews found two 1...
متن کاملTwo Notes on the Variety Generated by Planar Modular Lattices
Let Var(Mplan) denote the variety generated by the class Mplan of planar modular lattices. In 1977, based on his structural investigations, R. Freese proved that Var(Mplan) has continuumly many subvarieties. The present paper provides a new approach to this result utilizing lattice identities. We also show that each subvariety of Var(Mplan) is generated by its planar (subdirectly irreducible) m...
متن کاملInvestigation the status of instructional design with modular method in medical education
Background and Goal: Modular method is a form of in-service training which provides job skills into a form of independent training of audiences. Each of modular provides specific skill and at the same time besides the other modular led to a new and comprehensive skill. In fact, any educational modular is a set of knowledge, attitudes and skills which by using them it can be possible to do ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004